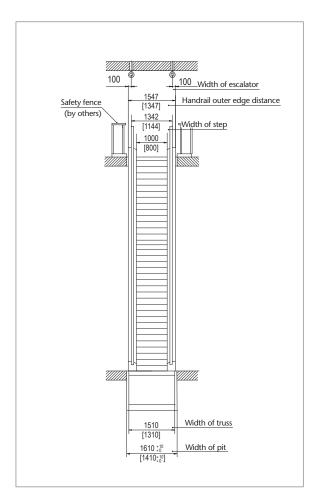

R2=5L1/1000+4

RM2=6.8(L-L1)/1000

KONE TransitMaster[™] 120 planning dimensions

Architectural planning data

27.3° inclination / 2.7 transition radii / 3 or 4 horizontal steps at each landing Code: EN 115-1:2008 + A1:2010¹⁾



 With one intermediate support 16400 < L <= 30000</th>
 R1=4.5(L-L1)/1000+10
 R2=4.5L1/1000+2
 R1=5(L-L1)/1000+12
 R2=4.5L1/1000+2

 With two intermediate supports 30000 < L <= 45000</td>
 R1=4.5(L-M)/1000+15
 R2=4.5L1/1000+3.5
 R1=5(L-M)/1000+15
 R2=4.5L1/1000+3.5

 RM1=6.1M/1000
 RM2=6.1(L-L1)/1000
 RM1=6.8M/1000
 RM2=

¹⁾ Other local codes dimensional requirements are available upon request, please contact your local KONE Sales representative for more information.

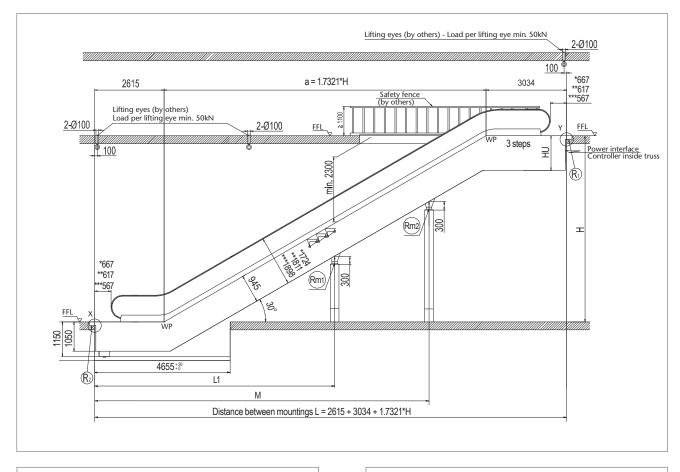
- All dimensions are in millimeters
- Maximum vertical rise H = 15000 mm
- One intermediate support is required when span (L) exceeds 16400 mm. A second intermediate support is required when span (L) exceeds 30000 mm.
- If intermediate support is required, please contact your KONE sales organization.
- Truss extensions are required when either the rise requires the use of double drives or the use of an inverter. For these dimensions please contact your local sales organization
- Additional cladding material maximum 15 kg/m²
- (XXX) = 4 horizontal steps
 - * = Balustrade height 900 mm
 - ** = Balustrade height 1000 mm
 - *** = Balustrade height 1100 mm
- [XXX] = Step width 800 mm
- For escalator with step width of 600 mm please contact your KONE sales office

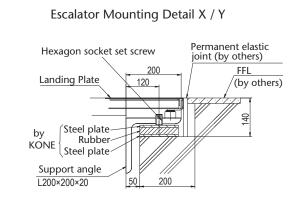
Note:

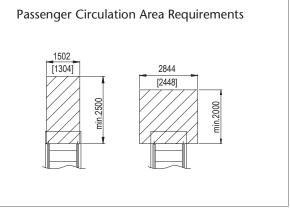
There is a possibility of having an escalator without intermediate support however a reinforced truss is required. Please contact KONE for more dimensional information.

If you would like to obtain the exact dimensions for your specific project, we recommend you use the Escalator Design Tools, which can be found on www.kone.com.

Position of intermediate support			
Span (mm)			
	3 horizontal steps	4 horizontal steps	
16400 <l<= 30000<="" td=""><td>L1 = (a1*1200+887)*0.889+945*0.459+2820 a1 = Round{[(0.5*L-2820)/0.889-887]/1200,0}</td><td>L1 = (a1*1200+887)*0.889+945*0.459+3220 a1 = Round{[(0.5*L-3220))/0.889-887]/1200,0}</td></l<=>	L1 = (a1*1200+887)*0.889+945*0.459+2820 a1 = Round{[(0.5*L-2820)/0.889-887]/1200,0}	L1 = (a1*1200+887)*0.889+945*0.459+3220 a1 = Round{[(0.5*L-3220))/0.889-887]/1200,0}	
30000 <l<= 45000<="" td=""><td>$L1 = (a1*1200+887)*0.889+945*0.459+2820 \\ M = (a2*1200+887)*0.889+945*0.459+2820 \\ a1 = Round [[(0.333*L-2820)/0.889-887]/1200,0] \\ a2 = Round [[(0.667*L-2820)/0.889-887]/1200,0]$</td><td>L1 = (a1*1200+887)*0.889+945*0.459+3220 M = (a2*1200+887)*0.889+945*0.459+3220 a1 = Round{[(0.333*L-3220)/0.889-887]/1200,0} a2 = Round{[(0.667*L-3220)/0.889-887]/1200,0}</td></l<=>	$ L1 = (a1*1200+887)*0.889+945*0.459+2820 \\ M = (a2*1200+887)*0.889+945*0.459+2820 \\ a1 = Round [[(0.333*L-2820)/0.889-887]/1200,0] \\ a2 = Round [[(0.667*L-2820)/0.889-887]/1200,0] $	L1 = (a1*1200+887)*0.889+945*0.459+3220 M = (a2*1200+887)*0.889+945*0.459+3220 a1 = Round{[(0.333*L-3220)/0.889-887]/1200,0} a2 = Round{[(0.667*L-3220)/0.889-887]/1200,0}	

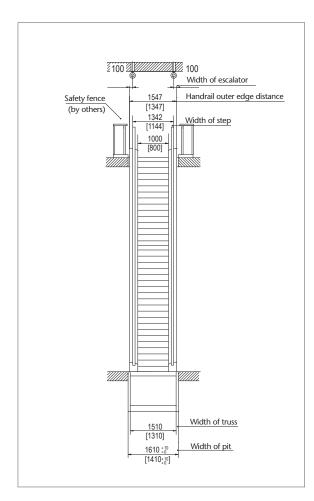



KONE TransitMaster[™] 120 planning dimensions


Architectural planning data

30° inclination / 1.5 transition radii / 3 horizontal steps at each landing

Code: EN 115-1:2008 + A1:20101)



Reaction force (kN)				
	800 mm step width		1000 mm step width	
Without intermediate support $L < = 16400$	R1=4.5L/1000+10	R2=4.5L/1000+2	R1=5L/1000+12	R2=5L/1000+3
With one intermediate support	R1=4.5(L-L1)/1000+10	R2=4.5L1/1000+2	R1=5(L-L1)/1000+12	R2=5L1/1000+3
16400 < L <= 30000	RM1=4.5L/1000+6		RM1=5L/1000+8	
With two intermediate supports 30000 < L < = 45000	R1=4.5(L-M)/1000+15	R2=4.5L1/1000+3.5	R1=5(L-M)/1000+15	R2=5L1/1000+4
	RM1=6.1M/1000	RM2=6.1(L-L1)/1000	RM1=6.8M/1000	RM2=6.8(L-L1)/1000

¹⁾ Other local codes dimensional requirements are available upon request, please contact your local KONE Sales representative for more information.

Position of intermediate support			
Span (mm)			
16400 <l<=19330< td=""><td>L1=9053</td></l<=19330<>	L1=9053		
19330 <l<=21410< td=""><td>L1=10092</td></l<=21410<>	L1=10092		
21410 <l<=23704< td=""><td>L1=11131</td></l<=23704<>	L1=11131		
23704 <l<=30000< td=""><td>L1=(a1*1200+887)*0.866+945*0.5+2615 a1=Round{[(0.5*L-2615)/0.866-887]/1200,0}</td></l<=30000<>	L1=(a1*1200+887)*0.866+945*0.5+2615 a1=Round{[(0.5*L-2615)/0.866-887]/1200,0}		
30000 <l<=45000< td=""><td>L1=(a1*1200+887)*0.866+945*0.5+2615 M=(a2*1200+887)*0.866+945*0.5+2615 a1=Round{[(0.33*L-2615)/0.866-887]/1200,0} a2=Round{[(0.667*L-2615)/0.866-887]/1200,0}</td></l<=45000<>	L1=(a1*1200+887)*0.866+945*0.5+2615 M=(a2*1200+887)*0.866+945*0.5+2615 a1=Round{[(0.33*L-2615)/0.866-887]/1200,0} a2=Round{[(0.667*L-2615)/0.866-887]/1200,0}		

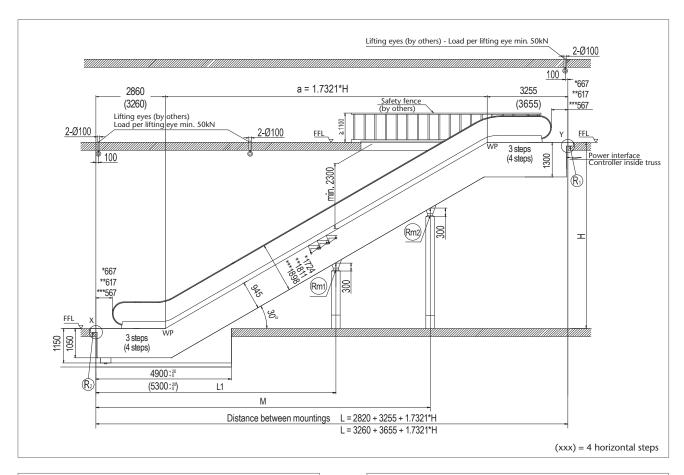
Truss depth of upper head			
Condition	HU		
H < =6000 & speed=0.5	1050		
H > 6000, or speed>0.5	1300		

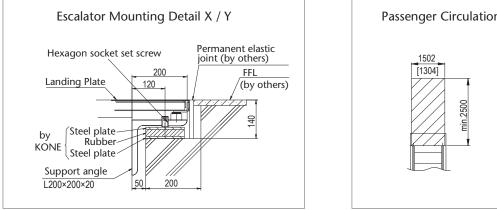
- All dimensions are in millimeters
- Maximum vertical rise H = 13000 mm
- One intermediate support is required when span (L) exceeds 16400 mm. A second intermediate support is required when span (L) exceeds 30000 mm.
- If intermediate support is required, please contact your KONE sales organization.
- Truss extensions are required when either the rise requires the use of double drives or the use of an inverter. For these dimensions please contact your local sales organization
- Additional cladding material maximum 15 kg/m²
 - * = Balustrade height 900 mm
 - ** = Balustrade height 1000 mm
 - *** = Balustrade height 1100 mm
- [XXX] = Step width 800 mm
- For escalator with step width of 600 mm please contact your KONE sales office

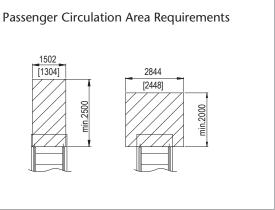
Note:

There is a possibility of having an escalator without intermediate support however a reinforced truss is required. Please contact KONE for more dimensional information.

If you would like to obtain the exact dimensions for your specific project, we recommend you use the Escalator Design Tools, which can be found on www.kone.com.

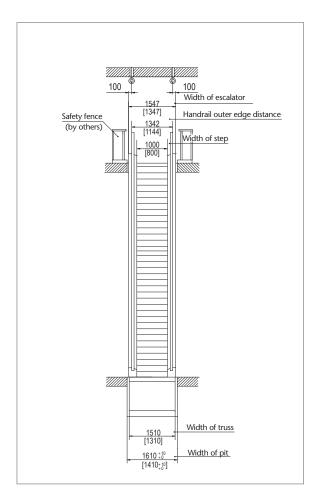

7600/\/8898-	0314 KONE	TransitMaster	120 planning	dimensions	4




KONE TransitMaster[™] 120 planning dimensions

Architectural planning data

30° inclination / 2.7 transition radii / 3 or 4 horizontal steps at each landing EN 115-1:2008 + A1:2010¹⁾



Reaction force (kN)				
	800 mm step width		1000 mm step width	
Without intermediate support $L < = 16400$	R1=4.5L/1000+10	R2=4.5L/1000+2	R1=5L/1000+12	R2=5L/1000+3
With one intermediate support	R1=4.5(L-L1)/1000+10	R2=4.5L1/1000+2	R1=5(L-L1)/1000+12	R2=5L1/1000+3
16400 < L <= 30000	RM1=4.5L/1000+6		RM1=5L/1000+8	
With two intermediate supports	R1=4.5(L-M)/1000+15	R2=4.5L1/1000+3.5	R1=5(L-M)/1000+15	R2=5L1/1000+4
30000 < L < = 45000	RM1=6.1M/1000	RM2=6.1(L-L1)/1000	RM1=6.8M/1000	RM2=6.8(L-L1)/1000

¹⁾ Other local codes dimensional requirements are available upon request, please contact your local KONE Sales representative for more information.

- All dimensions are in millimeters
- Maximum vertical rise H = 15000 mm
- One intermediate support is required when span (L) exceeds 16400 mm. A second intermediate support is required when span (L) exceeds 30000 mm.
- If intermediate support is required, please contact your KONE sales organization.
- Truss extensions are required when either the rise requires the use of double drives or the use of an inverter. For these dimensions please contact your local sales organization
- Additional cladding material maximum 15 kg/m²
- (XXX) = 4 horizontal steps
 - * = Balustrade height 900 mm
 - ** = Balustrade height 1000 mm
 - *** = Balustrade height 1100 mm
- [XXX] = Step width 800 mm
- For escalator with step width of 600 mm please contact your KONE sales office

Note:

There is a possibility of having an escalator without intermediate support however a reinforced truss is required. Please contact KONE for more dimensional information.

If you would like to obtain the exact dimensions for your specific project, we recommend you use the Escalator Design Tools, which can be found on www.kone.com.

Position of intermediate support					
Span (mm)					
	3 horizontal steps	4 horizontal steps			
16400 <l<=30000< td=""><td>L1=(a1*1200+887)*0.866+945*0.5+2860 a1=Round{[(0.5*L-2860)/0.866-887]/1200,0}</td><td>L1=(a1*1200+887)*0.866+945*0.5+3260 a1=Round{[(0.5*L-3260)/0.866-887]/1200,0}</td></l<=30000<>	L1=(a1*1200+887)*0.866+945*0.5+2860 a1=Round{[(0.5*L-2860)/0.866-887]/1200,0}	L1=(a1*1200+887)*0.866+945*0.5+3260 a1=Round{[(0.5*L-3260)/0.866-887]/1200,0}			
30000 <l<=45000< td=""><td>L1=(a1*1200+887)*0.866+945*0.5+2860 M=(a2*1200+887)*0.866+945*0.5+2860 a1=Round{[(0.333*L-2860)/0.866-887]/1200,0} a2=Round{[(0.667*L-2860)/0.866-887]/1200,0}</td><td>L1=(a1*1200+887)*0.866+945*0.5+3260 M=(a2*1200+887)*0.866+945*0.5+3260 a1=Round{[(0.333*L-3260)/0.866-887]/1200,0} a2=Round{[(0.667*L-3260)/0.866-887]/1200,0}</td></l<=45000<>	L1=(a1*1200+887)*0.866+945*0.5+2860 M=(a2*1200+887)*0.866+945*0.5+2860 a1=Round{[(0.333*L-2860)/0.866-887]/1200,0} a2=Round{[(0.667*L-2860)/0.866-887]/1200,0}	L1=(a1*1200+887)*0.866+945*0.5+3260 M=(a2*1200+887)*0.866+945*0.5+3260 a1=Round{[(0.333*L-3260)/0.866-887]/1200,0} a2=Round{[(0.667*L-3260)/0.866-887]/1200,0}			